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ABSTRACT: The Hurricane Forecast Improvement Project (HFIP; renamed the “Hurricane Forecast Improvement
Program” in 2017) was established by the U.S. National Oceanic and Atmospheric Administration (NOAA) in 2007 with a
goal of improving tropical cyclone (TC) track and intensity predictions. A major focus of HFIP has been to increase the
quality of guidance products for these parameters that are available to forecasters at the National Weather Service
National Hurricane Center (NWS/NHC). One HFIP effort involved the demonstration of an operational decision process,
named Stream 1.5, in which promising experimental versions of numerical weather prediction models were selected for TC
forecast guidance. The selection occurred every year from 2010 to 2014 in the period preceding the hurricane season (de-
fined as August–October), and was based on an extensive verification exercise of retrospective TC forecasts from candidate
experimental models run over previous hurricane seasons. As part of this process, user-responsive verification questions
were identified via discussions between NHC staff and forecast verification experts, with additional questions considered
each year. A suite of statistically meaningful verification approaches consisting of traditional and innovative methods was
developed to respond to these questions. Two examples of the application of the Stream 1.5 evaluations are presented, and
the benefits of this approach are discussed. These benefits include the ability to provide information to forecasters and
others that is relevant for their decision-making processes, via the selection of models that meet forecast quality standards
and are meaningful for demonstration to forecasters in the subsequent hurricane season; clarification of user-responsive
strengths and weaknesses of the selected models; and identification of paths to model improvement.

SIGNIFICANCE STATEMENT: The Hurricane Forecast Improvement Project (HFIP) tropical cyclone (TC) fore-
cast evaluation effort led to innovations in TC predictions as well as new capabilities to provide more meaningful and
comprehensive information about model performance to forecast users. Such an effort}to clearly specify the needs of
forecasters and clarify how forecast improvements should be measured in a “user-oriented” framework}is rare. This
project provides a template for one approach to achieving that goal.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Operational forecasting;
Model evaluation/performance; Decision support

1. Introduction

Every year, tropical cyclones (TCs) cause significant prop-
erty damage and human impacts (e.g., death, injuries, loss of
livelihoods) around the world (e.g., Pielke and Pielke 1997;
Rappaport 2000; Pielke et al. 2008; Gall et al. 2013). To miti-
gate these impacts, weather prediction centers across the
globe provide forecasts of TC movement (i.e., track) and in-
tensity; information based on these forecasts is provided to

emergency managers and the public to aid in decision-making
and actions related to lessening the impacts of TCs, such as
evacuating homes and businesses, and protecting property
from damage (e.g., Lazo and Waldman 2011; Bostrom et al.
2018). In response to the needs for better predictions of TC
track and intensity (with a major focus on intensity) to aid in
providing warnings, the U.S. National Weather Service
(NWS) established the Hurricane Forecast Improvement Pro-
ject (HFIP; now called the Hurricane Forecast Improvement
“Program”; https://hfip.org/about) in 2007. The goal of HFIP
has been to significantly improve predictions of TC’s track
(location) and intensity (maximum wind speed at 10 m, aver-
aged over 1 min; Landsea and Franklin 2013) in both the
Atlantic and eastern North Pacific basins (Gall et al. 2013).

The NWS’s official TC track and intensity forecasts for the
Atlantic and eastern North Pacific basins are produced by
forecasters at the NWS’s National Hurricane Center (NHC)
who use output from numerical weather prediction (NWP)
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and statistical models (as well as other information, including
observations from aircraft, buoys, and other sources) as guid-
ance for creating their forecasts. To achieve meaningful im-
provements in TC predictions, a major HFIP effort focused on
improvement of TC guidance from NWP and statistical mod-
els. This effort engaged mesoscale and global NWP model de-
velopers at universities, research laboratories and government
organizations to increase the skill of TC guidance.

To promote and monitor model improvements, HFIP es-
tablished an annual intercomparison of models to select ex-
perimental model guidance to be made available to NHC
forecasters during the subsequent hurricane season. Indepen-
dent scientists and forecast verification experts at the National
Center for Atmospheric Research (NCAR) were tasked with
collecting retrospective forecasts from the various research
and development groups and evaluating the performance of
these experimental forecast systems relative to predictions
from operational forecast models and guidance products.

TC forecasts have been subject to evaluation/verification
for many decades (Powell and Aberson 2001; Franklin et al.
2003; Rappaport et al. 2009), and NHC performs its own an-
nual evaluations of the forecasts produced by NHC forecast-
ers as well as predictions produced by operational NWP and
statistical models. Traditionally, these evaluations provide an
overall representation of year-to-year performance of NHC’s
forecasts as well as forecast guidance products (e.g., statistical,
NWP), with a focus on basic verification statistics summarizing
errors in predictions of track (total track, along-track, and cross-
track errors) and intensity (e.g., Cangialosi 2022; Cangialosi et al.
2020; Franklin et al. 2003; Rappaport et al. 2009). While case

studies are also undertaken, the annual summary verification
statistics often are presented in a bulk form (i.e., aggregated
across all storms in a given year and ocean basin or aggregated
by individual storm) using summary measures that ignore some
important aspects of performance, such as the underlying vari-
ability associated with the statistics, which are computed using a
finite sample (Wilks 2019, p. 470). For example, Cangialosi
(2022) presents overall statistics for the operational NHC fore-
casts from 2021 in comparison to performance in previous years
and relative to a no-skill climatology and persistence forecast
(“OCD5”) that provides a representation of the difficulty of the
forecast situation (Fig. 1).

While useful (e.g., for NHC forecasters) for monitoring
year-to-year changes in performance, basic summary verifica-
tion statistics provide limited diagnostic information that fore-
casters can apply to their interpretation and use of model
guidance to improve their subjective forecasts. Obtaining this
kind of information requires more in-depth analysis methods.
The bulk statistics also are of limited use for applications such
as those related to model development and meeting specific
user needs. For example, forecasters may be interested in un-
derstanding a variety of attributes that go beyond average
performance, such as the size and frequency of large errors, a
performance aspect that cannot be measured using traditional
verification approaches. Such basic statistics also do not provide
meaningful information about variability in performance}
information that can help forecasters and other users gain confi-
dence in the forecasts and understand the frequency and cir-
cumstances with which the forecasts are especially good or
poor. When faced with an unfamiliar model, such information

FIG. 1. Example operational evaluation of 2021 official (“OFCL”) TC intensity forecasts at
NHC (Cangialosi 2022). The average performance of official forecasts is compared to OCD5 (a
no-skill reference based on climatology and persistence) along with a comparison of the average
performance of official forecasts and OCD5 for the previous 5 years.
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about the variability in performance would be especially impor-
tant for developing understanding regarding how to optimally
apply the model guidance. Finally, the number of storms in-
cluded in TC verification studies can sometimes be relatively
small, which limits the confidence that can be placed on the re-
sulting verification statistics and their representation of overall
performance (WMO 2013). The evaluations described in this
study mitigate this issue through verification of TC predictions
across multiple years, as NHC typically does when selecting a
new operational model. Methods were also developed or se-
lected to respond to other issues mentioned (e.g., measuring
and understanding variability in performance, examining large
errors and relative performance of several models).

Over the past 15 years, work by the World Meteorological
Organization (WMO; e.g., WMO 2013) and various researchers
(e.g., Marchok et al. 2007; G. M. Chen et al. 2013; Moskaitis
2008; Yu et al. 2013; Chen et al. 2018) have demonstrated the
increased information about the performance of TC predictions
that can be attained through the application of diagnostic verifi-
cation methods. Diagnostic methods provide more in-depth in-
formation regarding forecast performance than can be obtained
using traditional verification approaches that rely solely on sum-
mary measures (e.g., Murphy et al. 1989; Marchok et al. 2007;
Moskaitis 2008; G. M. Chen et al. 2013; Y. E. Chen et al. 2013;
WMO 2013; Ebert et al. 2015). The development of user-
responsive approaches for forecast evaluation can also lead to
improved decision-making by forecast users and can guide
forecast developers toward increasing the usefulness of the
forecasts (e.g., Morss et al. 2008; Ebert et al. 2018).

The user-responsive evaluations of experimental HFIP fore-
casts conducted by NCAR (in collaboration with HFIP, NHC,
and researchers at multiple universities and research and oper-
ational centers) endeavored to focus on specific questions of
interest to forecasters and managers, who were interested in
understanding particular behaviors of the forecasts provided
by each candidate forecasting system, relative to a set of base-
line prediction systems. The user-responsive questions of inter-
est were defined in collaboration with these individuals and
groups, and the statistics generated through the evaluations
were specifically designed to answer these questions. The goal
of this effort was to provide NHC with as much information as
possible about the quality of the forecasts produced by the
candidate forecasting systems so that meaningful choices could
be made about their potential usefulness to NHC forecasters.
Examples of questions that were posed and answered via the
evaluations include “Was the overall performance of the ex-
perimental model at least as good as the performance of a
baseline model?”; “What is the uncertainty associated with the
verification results?”; and “How frequently did the experimen-
tal model perform better (or worse) than a baseline model?”
Specific approaches were developed to measure and communi-
cate the results of these evaluations.

Each of the five yearly evaluations during the period 2010–14
considered experimental forecasts over an extensive retrospec-
tive period (covering at least two and usually three hurricane sea-
sons). This approach led to large sample sizes (which allowed
robust estimation of the verification statistics) and made it possi-
ble to represent forecast performance across a variety of

meteorological and forecast circumstances. The large sample
sizes also increased the stability of the metrics that were com-
puted. In addition, the forecast samples were homogeneous; that
is, all samples were generated by the same experimental model
version, and model comparisons between experimental and indi-
vidual baseline models utilized the same model initializations and
lead times for each pair of models. The evaluations took place
prior to the beginning of each hurricane season using the output
from updated or new modeling systems. They considered ex-
treme behavior as well as the average behavior traditionally ex-
amined in standard evaluations, by making note of outliers;
outlier information can help forecasters develop confidence in
new forecasting systems.

This paper describes the user-responsive verification meth-
ods for TC forecast evaluation that were developed through
close collaborations between the NCAR team and those mak-
ing the decision as to which experimental models would be
made available to NHC forecasters during the upcoming hur-
ricane season. Section 2 provides more details regarding the
HFIP model evaluation and demonstration project and gives
an overview of general aspects of the yearly evaluation ap-
proach for TC prediction models. A hierarchy of evaluation
approaches, starting with the methods that have traditionally
been used for TC forecast evaluation and moving to the ad-
vanced user-responsive approaches applied in the HFIP eval-
uations, is described and demonstrated in section 3. A
discussion and some concluding remarks (including lessons
learned) are presented in section 4.

2. HFIP background: The model demonstration and
evaluation project

To meet the need for track and intensity forecasts with
higher accuracy and reliability, HFIP has focused on improv-
ing the numerical guidance provided to NHC forecasters
by NOAA’s operational modeling suite. In this context,
“forecast model” refers to any objective tool used to generate
a prediction of a future event. These investments have fo-
cused on both near-term development and testing directed at
yearly upgrades to the operational NWP capabilities, for
which HFIP adopted the term “Stream 1,” and longer-term
efforts that take multiple years to enhance operations, for
which HFIP adopted the term “Stream 2.” From 2010 to
2014, HFIP and NHC included an intermediate path to opera-
tions known as “Stream 1.5.” The Stream 1.5 models con-
sisted of predictions from vetted experimental models and/or
techniques to which NHC forecasters were provided real-time
access during a particular hurricane season (Gall et al. 2013).

The driving force behind HFIP’s Stream 1.5 was to provide
NHC forecasters the opportunity to have access to promising
guidance for one or more hurricane seasons prior to what was
possible without Stream 1.5. In particular, Stream 1.5 pro-
vided a temporary path that bypassed the budgetary and tech-
nical bottlenecks associated with traditional operational
implementation via the use of nonoperational computing re-
sources and a real-time data feed that was separate from the
operational data feed (Gall et al. 2013).
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Stream 1.5 prediction systems were run systematically as
part of HFIP’s annual “Demonstration Project” on nonopera-
tional computing platforms. The resulting experimental guid-
ance was provided to NHC in the form of “A-deck” files,
which are text files containing forecasted storm properties
(e.g., center location, maximum wind speed, storm size) that
conform to the Automated Tropical Cyclone Forecast (ATCF)
format specifications (Sampson and Schrader 2000) used in
forecast operations. The introduction of experimental guidance
into the operational environment without thorough vetting can
negatively impact the forecast process by distracting and possi-
bly wasting valuable time as forecasters work to synthesize their
forecast products, and could possibly make their operational
forecasts worse. Knowledge about the strengths and weaknesses
of a particular forecast model plays an important role in the
forecasting process and can help forecasters develop confidence
in the model predictions. Hence, user-responsive evaluations of
the models prior to operational demonstration were a critical
component of the Stream 1.5 concept.

The Stream 1.5 qualification process for each upcoming
hurricane season involved an extensive evaluation of each ex-
perimental forecast model. This evaluation focused on retro-
spective forecasts for a diverse set of tropical cyclones in the
Atlantic and eastern North Pacific basins that were selected in
December, with the cases spanning two to three hurricane
seasons. The nominal schedule for the selection process in-
cluded delivery of retrospective forecast samples by each of
the development teams to the NCAR team for evaluation by
mid-April, and completion of the evaluations by the NCAR
team by the end of May. Following delivery of the evaluation
reports, NHC selected systems to be included in Stream 1.5
with a goal of the Stream 1.5 data feed being ready by 1 August,
traditionally considered the start of the “peak” of the hurricane
season in the Atlantic basin.

The retrospective forecasts, delivered as A-deck files,1 were
generated by each modeling group by applying their own method
of storm tracking to their model output. The model development
groups were required to submit a homogeneous sample of retro-
spective forecasts in the form that would be used in real-time if
their model was selected. To be consistent with NHC’s proce-
dures, the experimental models that were considered to be “late
guidance”2 were converted to early model guidance by applying
an interpolator package with the same functionality as the soft-
ware used by NHC (Cangialosi 2022). That is, the evaluation pro-
cess was configured to capture all aspects of the real-time data
processing that would occur during the hurricane season.

Over the years, the experimental candidates included deter-
ministic global and regional models, as well as multimodel

ensembles, ensembles based on perturbations to a single-
model, and experimental configurations of statistical models.
Performance statistics for track and intensity were considered
individually, such that an experimental model might be se-
lected to provide track guidance but not intensity guidance
and vice versa. Experimental candidates, when appropriate,
also had the potential to be selected to be included in an ex-
perimental consensus forecast or simple multimodel ensem-
ble, which was created by simply averaging the forecasts from
a select set of operational and experimental model forecasts
(e.g., Simon et al. 2018; see also https://www.nhc.noaa.gov/
verification/verify2.shtml).

Each Stream 1.5 evaluation focused on comparing the per-
formance of the experimental models with the performance
of the previous year’s top-flight forecast models; these models
are defined as the three operational models with the best per-
formance during the previous hurricane season. Note that the
top-flight forecast models for track are not necessarily the
same as those for intensity. These operational baselines were,
for the most part, based on the version of the model run at
the time of the storm (i.e., the real-time operational guid-
ance). When appropriate, an evaluation of the Stream 1.5 can-
didate’s impact on operational consensus forecasts was also
conducted. For this evaluation, the baseline was the opera-
tional consensus forecasts and an experimental consensus was
created by adding the experimental forecasts to the opera-
tional consensus.

The performance guidelines put forth by NHC for their de-
cision process served as the starting point for developing the
evaluation plan with an eye toward providing the necessary
information in the most concise yet informative format possi-
ble. The evaluation plans evolved over the years as outcomes
from the previous year’s evaluation stimulated more ques-
tions and an interest in gaining a better understanding of nu-
ances in the datasets. Once a question was identified by NHC
staff and discussed with NCAR staff, the evaluation group en-
deavored to identify a statistically valid analysis approach that
would provide a meaningful answer. The planning and selec-
tion guidelines also took into account the NHC’s extensive ex-
perience with respect to the performance trends of the
operational models.

Differences between the performance trends for track and
intensity forecasts meant that the selection guidelines for
track and intensity were not identical:

Tropical cyclone track forecast guidelines: At the time of
the Stream 1.5 project, NHC’s track forecast errors decreased
by about 3%–4% per year on average, which paralleled gains
made in the operational numerical guidance. Based on these
trends, NHC put forth the following guidelines for experimen-
tal models to be selected for Stream 1.5 track guidance:

• Projected improvement of 3%–4% over the average error
of the previous year’s top-flight models

• Techniques that improve the conventional model consensus
track error by at least 3%–4%

• Schemes that otherwise enhance the operational forecast by
providing better “guidance on guidance” (e.g., Rappaport
et al. 2012)

1 A file format used by NHC and other entities that includes a
TC’s location and intensity.

2 Late model guidance refers to guidance that would not be
available during the forecast cycle, which starts at a synoptic time
(e.g., 1200 UTC) and ends with the release of the official forecast
3 h after the synoptic time (e.g., 1500 UTC). Late model guidance
is converted to early model guidance for the next cycle by applying
an adjustment based on the current synoptic time and analyzed
position and intensity of the TC.
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• An especially high “frequency of superiority”
• High run-to-run consistency in combination with accept-
able performance

Tropical cyclone intensity forecast guidelines: Leading up to
the Stream 1.5 project, little to no improvement in NHC tropi-
cal cyclone intensity forecast accuracy had occurred over at
least 20 years. Model guidance had improved but on average
was no better than the NHC forecast. Hence, techniques that
improved upon existing guidance for tropical cyclone intensity
and rapid intensification3 received special consideration in the
selection process.

While model developers were not required to submit retro-
spective forecasts for every storm or forecast cycle laid out in
the test plan, shorter test periods or smaller samples were
strongly discouraged. Participants were made aware that
smaller samples would likely necessitate larger improvements
in performance in order for a model to be selected for Stream
1.5. Ultimately, to participate in Stream 1.5, a candidate pro-
ject had to be approved by HFIP management, the developer
or developer’s home institution, and the NHC, with NHC
having the final authority to select which candidate prediction
systems qualified for the Stream 1.5 real-time activity.

Over the five years during which the Stream 1.5 concept
was implemented, the number of experimental configura-
tions evaluated each year varied from 4 to 10, where some
developers submitted multiple configurations for evaluation
in a particular year. Stream 1.5 candidates selected in a par-
ticular year ranged from a little more than 40% of those
submitted to almost 90%. Candidates had the possibility to
be selected to have their forecasts displayed explicitly for track
and/or intensity, or to be a member of an experimental consen-
sus for track and/or intensity, or both. At least one candidate
was selected for each of these four categories each year, where
the number selected per category varied from one to as many as
four.

While the selection guidelines appear to be relatively
straightforward, the outcomes of the evaluations were not al-
ways clear. Often a candidate would outperform the baselines
for certain lead times while either being indistinguishable
from the baselines as assessed via statistical significance evalu-
ations or performing worse than the baselines for other lead
times; or they could exhibit strong performance in one basin
but not the other. To be selected to be displayed explicitly
during the demonstration, NHC looked for candidates that
demonstrated the required degree of improvement for a ma-
jority of the lead times with little to no degradations for the
remaining lead times for at least one of the basins. Perfor-
mance for the other basin could be somewhat mixed (e.g.,
degradations for a limited number of lead times) or simply not
distinguishable from the baselines, but a strong signal of poor
performance for the other basin led to a candidate not being
selected. Candidates with smaller sample sizes could be se-
lected to be included in Stream 1.5, but only if the candidate’s

performance was especially strong. Simply meeting the se-
lection guidelines for small samples was not sufficient. Can-
didates for which the metrics revealed inconsistent or
erratic performance (outperformed baselines about as often
as performing substantially worse) were not selected, nor
were candidates associated with forecasts with a notable
number of cases with exceptionally large errors. These two
characteristics can only be determined by looking beyond
the traditional bulk statistics, as will be demonstrated in the
examples discussed in section 3.

3. Hierarchy of user-responsive evaluations

Evaluations of retrospective TC intensity predictions produced
by two experimental models (E1 and E2) compared to “best
track” estimates of actual intensity4 are presented in the following
subsections with the goal of demonstrating the concepts and ideas
behind the hierarchy of analyses developed for the HFIP retro-
spective evaluations. The description of each example starts with
approaches that were applied to answer very basic questions
about the performance of the experimental model, in compari-
son to the performance (also relative to the best track esti-
mates) of the three baseline models (B1, B2, and B3; Table 1)5

and then progress to more complex evaluations that were un-
dertaken to respond to questions that have greater specificity.
These methods include approaches traditionally used in TC
forecast evaluations (both operationally and in research), along
with several new approaches developed during the project. The
retrospective forecasts in these examples were produced by
each experimental modeling group for TCs that occurred in
three prior years. While multiple experimental models were
considered for HFIP’s demonstration project, it is important to
note that the purpose of the retrospective evaluations was not
to directly compare the experimental models to each other.
Rather, NHC was interested in how well the individual models
performed relative to the baseline models, which represent the
top performing models available and have traditionally been
used to predict storm movement and intensity. The examples
consider intensity forecasts, but the concepts presented equally
apply to predictions of track.

a. Example 1

This example was selected to demonstrate how the hierar-
chy of analyses provided NHC with in-depth information on
the performance of an experimental model (E1) that was se-
lected for Stream 1.5. The information was able to provide
NHC forecasters with the confidence they needed to feel com-
fortable adding the experimental model guidance to the prod-
ucts they use to create their forecasts.

3 NHC defines rapid intensification as an increase in the maximum
sustained winds of a tropical cyclone of at least 30 kt (35 mph; 55 km
h21) in a 24-h period (https://www.nhc.noaa.gov/aboutgloss.shtml).

4 The “best track” is a subjectively smoothed representation of a
TC’s location and intensity over its lifetime based on a post-storm as-
sessment by experts (https://www.nhc.noaa.gov/aboutgloss.shtml#ra).
Best track intensity estimates have a precision of 5 kt.

5 The experimental and baseline model-based intensity predic-
tions have a precision of 1 kt.
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1) AVERAGE PERFORMANCE

Figures 2 and 3 consider average performance of the fore-
casts, measured as the mean of the absolute values of the
intensity errors (i.e., MAIE). In particular, Fig. 2 presents
comparisons of the average performance of the B1, B2, and
B3 forecasts to the average errors for the three years of retro-
spective forecasts produced by E1 (using homogeneous sam-
ples), with sample sizes for each lead time presented across
the top of the chart.6 The plots in Fig. 2 are similar in form to
those shown in Fig. 1. That is, the plots show verification re-
sults for the forecasts of interest relative to a standard of com-
parison. In contrast to Fig. 1, however, the standards of
comparison are the three baseline models selected as the
standards by which to evaluate the experimental models (note
that these models}denoted by NHC as “top-flight” models}
are different from the OCD5 no-skill forecasts applied in
Fig. 1). The results presented in Fig. 2 suggest that (i) the E1
forecasts had much better average performance than the B1
forecasts, for almost all lead times, and especially for later
times, and (ii) the E1 predictions are slightly better than the
B2 and B3 predictions for most lead times. Based on this in-
formation, one might conclude that E1 has better perfor-
mance overall than all three of the baseline models.

Figure 3 displays the same scores as Fig. 2; however, Fig. 3
also considers the question of whether the average differences
are meaningful from a statistical perspective. A natural first
step toward answering this question is to estimate statistical
confidence intervals (CIs; Chambers et al. 1983; McGill et al.
1978; Wilks 2019) for the average intensity error values shown

in Fig. 2. The 95% CIs, computed using standard methods
based on the t distribution and incorporating a variance
inflation factor (VIF; Wilks 2019) to account for temporal
autocorrelation, are shown in Fig. 3 using black and orange
vertical lines.

The black and orange CIs in Fig. 3 represent a measure of
the statistical uncertainty associated with the average intensity
errors estimated for E1 and each type of baseline forecast.
Examining Fig. 3 indicates that the CIs for E1 overlap the CIs
for all three baseline forecasts for all lead times. Based on this
information, one would conclude that E1 performance is not
significantly better than the performance of any of the base-
line models for any lead times–quite a different conclusion
from that reached via Fig. 2.

Further examination of Fig. 3 provides more insights. The
values in blue at the bottom of each graph are based on
“paired comparisons,” of the intensity errors associated with
E1 and each of the baseline forecasts. That is, the errors for
E1 and each baseline model forecast initialization (also com-
monly called “issue time”) and lead time are directly com-
pared; for example, in Fig. 3a, the E1 error for a particular
date, issue, and lead time has been subtracted from the corre-
sponding B1 error for the same date, issue, and lead time, and
the same has been done for each date, issue, and lead time in
the sample. This process yields a set of error differences for
each model pair (i.e., E1 and B1, E1 and B2, and E1 and B3)
and for each lead time. From these difference samples, average
paired differences and their CIs were computed using the t dis-
tribution, taking into account first-order temporal correlations
(Chambers et al. 1983; McGill et al. 1978; Wilks 2019). The blue
dots represent the average paired differences between errors as-
sociated with the E1 intensity predictions and corresponding er-
rors associated with each of the baseline model predictions; the
vertical lines associated with each blue point are the 95% CIs on
these differences. The paired differences can be considered sig-
nificantly different from zero if the CIs do not overlap the hori-
zontal “zero” lines; these significant differences are represented
by filled blue dots.

Examination of the paired differences in Fig. 3 yields still
different conclusions from the information provided by com-
paring the average errors in Fig. 2 and the black and orange
lines in Fig. 3. In particular, the paired comparisons suggest

TABLE 1. Baseline models used in the HFIP evaluations of intensity predictions (NHC 2019).

Model
No. Model ID Name Description Reference

B1 GHMI Interpolated-dynamical
Geophysical Fluid Dynamics
Laboratory (GFDL) model

Previous cycle of the NWP model, GFDL,
adjusted using a variable intensity offset
correction

Bender et al. (2007)

B2 LGEM Logistic Growth Equation Model Statistical–dynamical model based on a
logistic growth equation

DeMaria (2009)

B3 DSHP Decay-Statistical Hurricane
Intensity Prediction Scheme

Statistical–dynamical model based on
multiple regression techniques, that
considers relationships between storm
behavior and environmental conditions
estimated from dynamical model
predictions, climatology, and persistence

DeMaria and Kaplan
(1994)

6 Note that the sample sizes in this and later figures differ across
the lead times and the baselines. This variation occurs because in-
dividual times are not included in the verification unless observed
and forecast intensity are present in the sample for both the base-
line and the experimental model being compared. Tropical cyclo-
nes have a finite lifetime. The samples include forecasts for the
same storm throughout its lifetime, which naturally leads to
smaller samples for longer lead times because the observed and/or
forecasted disturbance will no longer be classified a tropical cy-
clone for longer lead times as the forecast cycles approach the end
of the tropical cyclone’s lifetime. The same would be true for eval-
uations of track location.
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FIG. 2. Mean absolute intensity error (MAIE) values for E1 (orange) compared to the (a) B1,
(b) B2, and (c) B3 baseline models (black). The sample size for each lead time and model
comparison is shown along the top of each graph.
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FIG. 3. Black and orange dots show the MAIE values for E1 (orange) and each of the three
baseline models (black), as in Fig. 2. Blue dots show average differences between the paired ab-
solute intensity values for E1 and the baseline models (baseline model error minus E1 model er-
ror). Vertical lines represent the 95% CIs on the mean errors and differences. A filled blue dot
occurs whenever a CI for the error differences does not intersect zero, indicating a statistically
significant mean error difference.
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that (i) E1 performance is significantly better than B1 perfor-
mance for almost all lead times and (ii) E1 performance is sig-
nificantly better than B2 performance for lead times between
36 and 72 h, inclusive. However, in general, E1 performance
is not shown to be significantly better than B3 performance
for any lead time. The differences in results between the un-
paired and paired comparisons in Fig. 3 occur because the
paired comparison}evaluating the error differences}is a
more powerful statistical test of the differences between the
errors (e.g., Wilks 2019).

The lessons learned from Figs. 2 and 3 include the impor-
tance of considering sampling variability (as represented here
via confidence intervals) when making comparisons between
forecasting systems. Unjustified conclusions can be made
when this sampling uncertainty is ignored; for example, it
would be inappropriate to conclude that E1 forecast perfor-
mance was significantly better than B3 performance (as might
be concluded from Fig. 2). Moreover, unpaired comparisons
(represented by the black and orange vertical lines in Fig. 3)
lead to conclusions that are different from those obtained by
more powerful comparisons using a paired statistical test,
which demonstrate that the E1 forecasts were significantly
better than the B1 predictions for most lead times, and they
were better than the B2 predictions for some lead times. It is
worth noting that even this more efficient comparison ap-
proach was not able to identify significant differences between
the E1 predictions and those provided by B3. However, an-
other important conclusion from these plots in the context of
HFIP goals is the fact that E1 did not perform significantly
worse than the baseline forecasts.

Many of the results in Figs. 2 and 3 can be summarized in a
table, to provide a quick-look summary of the overall perfor-
mance of the candidate model relative to the baseline models.
Over several years, NCAR worked closely with NHC staff to
develop and enhance a table to provide a useful summary of

the information that can be gleaned from the figures, includ-
ing further information about the relevance of estimated per-
formance differences. The display that resulted from this
evolutionary process is demonstrated in Fig. 4 for the E1
model evaluation. This type of quick-look summary of multi-
ple comparisons is often referred to as a scorecard.

Each cell in Fig. 4 includes key information for a given com-
parison, which succinctly summarizes the results of each com-
parison in a rich and easily understandable overview of the
model’s performance. The numbers, from top to bottom in
each cell, are the sample size, the average error difference
(with blue text indicating the candidate model had smaller av-
erage errors, and red text indicating that the baseline model
had smaller average errors), the percentage difference in av-
erage errors, and the significance level for the paired statisti-
cal comparison. This table is essentially a summary of the
graphs (e.g., Fig. 3) showing paired comparisons between the
candidate and baseline models, with explicit results of the ap-
plication of a paired t test, including an autocorrelation-based
adjustment. Colored shading is used to represent the strength
of the differences for comparisons that are statistically signifi-
cant, as defined in the table legend. The Stream 1.5 selection
guidelines described in section 2 served as the guiding princi-
ples for the difference ranges associated with gradations in
the shading. These guidelines provided clear guidance for
track}improvement of 3%–4%. Since the intensity guide-
lines did not specify a threshold, the NCAR team consulted
with NHC to determine what shading scheme they felt would
be most useful for their decision-making process.

A quick look at Fig. 4 indicates (as also shown in Fig. 3)
that many of the differences in performance between E1 and
B1 and some of the differences between E1 and B2 are statis-
tically significant. Moreover, many of the (statistically signifi-
cant) comparisons of E1 and B1 errors indicate average error
improvements of 10% or greater. In contrast, the comparisons

FIG. 4. Summary table for comparisons of E1 performance to the performance of the three baseline models. The four elements in each
cell, from top to bottom, are the sample size (i.e., the total number of paired comparisons), the mean error difference, the percent im-
provement (or reduction in performance), and the probability (3100) of having a smaller error difference (i.e., a difference closer to 0)
based on a paired comparison. Blue (red) lettering in the second row of each table cell indicates the candidate model had better (worse)
performance than the baseline model. Red/blue shading is used to indicate whether significant differences are $5% (lighter shading) or
$10% (darker shading).
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between E1 and B2 performance suggest improvements (for
lead times with statistically significant results) between 5%
and 10%. While the average differences estimated for the
comparison between E1 and B3 suggest better performance
by E1, the differences are not statistically significant.

These results gave NHC confidence that forecasts provided
by model E1 would on average be at least as good as}and
clearly no worse than}the baseline forecasts, and would im-
prove upon the forecasts provided by two of the baseline fore-
casts (when considering average performance) for at least
some of the lead times. While the Stream 1.5 guidelines fo-
cused on the candidates’ demonstrating improvements over
the top-flight models, NHC did not require this improvement
to be universal for all top-flight models for all lead times.
Hence, based on these metrics, E1 was a promising candidate.

2) LARGE ERRORS

Very large individual errors in track or intensity are often
of greater importance to NHC than average errors. Such large
errors could be associated with consequential incorrect deci-
sions made by forecasters. For example, large errors in track
location forecasts could have important implications for
decision-making (e.g., regarding regions to be warned), as
could large under- or overprediction of TC intensity, which
could lead, for example, to nonoptimal estimates of life-
threatening surge or potential damage by end-users and have
other impacts on end-users’ decision-making (e.g., about
evacuation), particularly if forecast credibility is damaged.
Thus, NHC was interested in characterizing the frequency
and size of large errors associated with forecasts provided by
the experimental models.

One approach to evaluating the occurrence of large errors
involves examining the full distributions of absolute errors, as
in Fig. 5. In this figure, boxplots show the quantiles of the dis-
tributions of E1 absolute errors in comparison to the absolute
error distributions for the three baseline models. The plots for
individual lead times also show the mean values (denoted by
the * within each box), the upper limits of values not consid-
ered to be outliers (the end of the upper bar}also called the
“whisker”}above each box) and the points considered to be
outliers7 (open circles above the upper whiskers).

Examination of Fig. 5 suggests that the central portions of
the error distributions (as represented by the “boxes”) for E1
and the three baseline models are fairly similar, with consider-
able overlap, but some differences can be observed with re-
spect to the locations of the medians (horizontal line inside
each box) and the heights of the boxes, which represent the
central portions of the distributions of values. The boxplot ap-
proach to comparing the errors also brings to light that the B1
errors are more variable than the E1 errors, as can be seen
from the fact that the boxes for B1 tend to be notably taller

than the boxes for E1. In addition, errors considered to be
outliers (represented by the points above the boxes and
whiskers) suggest some differences in performance. In partic-
ular, B1 tended to have more large errors than E1 (Fig. 5a).
In contrast, outlier points in Figs. 5b and 5c (comparing the
upper points for E1 to those for B2 and B3) indicate the E1
outlier errors are fairly similar to those from these baseline
models. This result suggests that E1 is associated with similar
or smaller outlier errors than would arise from use of the
baseline models}that is, E1 performs as well or better than
the baseline models in terms of this attribute. Hence, the
NHC forecasters could expect to encounter large errors that
are not outside the norm associated with the baseline models
when using E1 in their forecasting processes.

3) RELATIVE PERFORMANCE

In considering differences in performance (i.e., differences
in errors between models) for particular storms and times,
NHC was interested in the frequency with which the errors
produced by the candidate model were larger or smaller than
the corresponding (paired) errors produced by the baseline
models. If the experimental model typically produced smaller
or equivalent errors, it might be a good candidate to present
to the forecasters for consideration in their forecasting pro-
cess (depending on other aspects of performance).

The analyses in Fig. 6 show the frequencies with which the
experimental and baseline models were “better” than the al-
ternative (i.e., the percent of times when the baseline was bet-
ter, when the experimental forecast was better, and when the
models were essentially tied). In this example, an error differ-
ence threshold of 1 kt (1 kt ’ 0.51 m s21) (i.e., the precision
of the model-based intensity forecasts), was applied to define
“better.”8 When the difference in errors was 1 kt or smaller,
the model results in these diagrams were categorized as a tie.
To represent uncertainty, 95% confidence intervals are shown
for the frequency values, based on application of the binary
distribution and taking into account first-order autocorrela-
tions (Wilks 2019).

In the comparison of E1 to B1 (Fig. 6a), it is apparent that
the experimental forecasts more frequently had smaller errors
for longer (.48 h) lead times. For the comparison between
E1 and B2 (Fig. 6b), E1 tended to perform better than B2,
particularly for lead times between 36 and 84 h. As in other
analyses, the comparison of E1 and B3 provides a more nu-
anced result: while E1 tended to be associated with superior
performance for many lead times, the frequency differences
were not large and were not statistically significant (as indi-
cated by the overlap of the CIs) for many lead times. For all
comparisons, ties were very infrequent.

It is interesting to note that some of the results in Fig. 6
seem to be inconsistent with the results shown in Fig. 4. For
example, while Fig. 4 suggests E1 performance is significantly
better than B1 performance for almost all lead times, the con-
fidence intervals in Fig. 6 overlap somewhat for early lead7 Here outliers are defined as data values that are located above

the “whisker” located above the central box. The length of the
whisker is estimated as 1.5 times the interquartile range (IQR).
(IQR is the difference between the 0.75th and 0.25th quantiles.)
See Tukey (1977), Wilks (2019).

8 For track, a difference of 6 n mi (1 n mi 5 1.852 km) was used
as the threshold for evaluations of superior performance.
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FIG. 5. Boxplots showing distributions of absolute intensity errors for predictions by E1 (in or-
ange) and each of the baseline models (in black). Boxes represent (from top to bottom) the
0.75th (top horizontal line), 0.50th (middle horizontal line), and 0.25th (bottom horizontal line)
quantile values of the error distributions. “Whiskers” above the boxes represent the nonextreme
values (greater than the 0.75th quantile) included in the distributions, and whiskers below the
boxes extend from the 0.25th quantile to the minimum values (0, in this case), representing the
smallest errors. The mean is denoted by an asterisk. Outlier values are represented by the circu-
lar points near the tops of the plots.
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FIG. 6. Frequency (%) with which the experimental model (E1) had larger or smaller errors
than the baseline models (a) B1, (b) B2, and (c) B3, using an error difference threshold of 1 kt to
distinguish improvement of one model over another. A “tie” was assigned when the absolute er-
ror difference was less than or equal to 1 kt. The bands around the lines represent 95% confi-
dence intervals on the frequencies, based on application of the binary distribution, including con-
sideration of first-order autocorrelations.
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times, giving a less strong indication of differences. However, in
both Figs. 4 and 6, the largest differences between B1 and E1
performance are associated with longer lead times (72–120 h).
Similar apparent discrepancies can be seen in the comparisons
of E1 with B2 and B3. Specifically, the E1 versus B2 compari-
son in Fig. 6b suggests significant improvements of E1 over B2
for lead times between 36 and 84 h (and marginally, 24 and
96 h) lead times, whereas Fig. 4 shows significant differences for
lead times of 36–72 h. For the B3 comparison, Fig. 4 does not
identify any significant differences between B3 and E1 results,
whereas the results in Fig. 6 suggest significant differences at
60 h and marginally at 72 and 108 h.

While the results in Figs. 4 and 6 seem inconsistent, the two
analyses represented in these diagrams demonstrate the bene-
fits of examining performance from more than one perspec-
tive. In Fig. 4, the CIs focus on the average magnitude of the
differences (e.g., E12 B1) and their variability, while the anal-
yses shown in Fig. 6 are not particularly focused on the magni-
tude of the differences. In fact, in the Fig. 6 analysis, a small
(2-kt) difference counts equally as much as a large one (e.g.,
10 or 20 kt). In contrast, in Fig. 4, the magnitude and variabil-
ity of the differences has more impact. Hence, the Fig. 6 analy-
sis answers a very different question from the one considered
in Fig. 4, and provides a different nuance that is meaningful
when considering how often a model exhibits an error larger
than that of other models.

Although not applied during the original HFIP evaluations,
one benefit of many of the approaches that were employed is
the ability to vary thresholds and other aspects of the analysis
to target specific questions of interest. For instance, the exam-
ination of “superior” performance can be adapted to apply a
threshold larger than 1 kt. As an example, Fig. 7 shows the
frequency of superior performance percentages for E1 versus
B1, B2, and B3 using a difference threshold of 5 kt to define
“superior performance,” which corresponds to the precision
of the intensity estimates in the best track and NHC forecasts.
Comparing Fig. 7a to Fig. 6a suggests that the overall patterns
are mostly similar between the two thresholds, but some of
the nuances are different. For example, the number of ties is
much more frequent with the 5-kt threshold compared to the
1-kt threshold. In fact, for longer lead times (72 h and greater)
for the E1 versus B1 comparison, ties occurred with the same
frequency as superior performance for B1. In the E1 versus
B2 and E1 versus B3 comparisons, ties were more common
than the experimental or baseline frequencies for all (E1 ver-
sus B2) or most (E1 versus B3) of the lead times. Hence, one
could conclude that, with a 5-kt difference threshold, E1 per-
formed more similarly to B2 and B3, and most frequently had
smaller errors than B1, particularly for longer lead times. Fi-
nally, the curves for the frequencies of ties in Figs. 6 and 7 all
have a decreasing trend with lead time. This result mirrors the
fact that the forecasts tend to be more similar for shorter lead
times and to depart from each other as the lead-time increases.

To summarize, the frequency of superior performance anal-
yses provided information to NHC about relative perfor-
mance and gave them confidence regarding whether the
experimental system would produce forecasts that would be

as good as or better than the baseline forecasts a majority of
the time.

4) PERFORMANCE RANKING

All of the approaches presented earlier compare the experi-
mental forecasts to an individual baseline. These individual
comparisons do not provide any insight into whether cases
where E1 outperformed B1 were the same cases as those
where E1 outperformed B2 or B3. Discussions with NHC
staff revealed that they also were interested in understanding
how the experimental models performed relative to the top-
flight models as a group. In this example, forecasts from the
experimental model are compared to forecasts from all three
baselines. For each forecast, the models’ errors were ordered
from smallest to largest and each model was assigned a rank
value. These rank values can be summarized by examining
how frequently the candidate model achieved each rank.
Note that for this approach, the same samples of forecast
dates and times are used for all of the forecast systems in-
cluded in the comparisons (i.e., a homogeneous sample was
used for all baselines and the experimental model).

Figure 8 summarizes the information gleaned from this ap-
proach applied to candidate model E1. The frequency with
which E1 performance was best (i.e., ranked 1), second best
(i.e., ranked 2), third best (i.e., ranked 3), and last (i.e.,
ranked 4) is presented, with 95% confidence intervals on the
frequencies shown using dashed lines. The horizontal line in-
tersecting the y axis at the 25% point represents the expected
percentage of time that any of the models would be expected
to be best if the frequencies were random.

As shown in Fig. 8, the results for this comparison are
somewhat mixed. For shorter lead times (through 72 h), E1
most commonly ranked second, whereas for very long lead
times (108 and 120 h) it ranked first/best. It was uncommon
for E1 to rank last (i.e., 4th) in this comparison. It is notable
that (i) the frequency of E1 ranking best is above the 25%
line for lead times greater than 48 h and (ii) the frequency of
E1 ranking worst is less than 25% for all lead times. These re-
sults gave NHC confidence that E1 could contribute meaning-
fully to the forecasting process.

5) NHC DECISION-MAKING

These analyses gave NHC a wide variety of insights into
the potential contributions of E1 to their forecasting process.
After examining these results, NHC made a decision to ex-
plicitly include E1 in the forecasting process during the subse-
quent hurricane season. This decision was made because E1
demonstrated promise for being able to “improve upon exist-
ing guidance for tropical cyclone intensity” and therefore met
the selection guidelines.

b. Example 2

This example was selected to demonstrate how the hierar-
chy of analyses provided NHC with in-depth information on
the performance of an experimental model (E2) that was not
selected for Stream 1.5. This experimental model showed
promise for some aspects of the retrospective sample but also
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FIG. 7. As in Fig. 6, but a tie is assigned to differences less than or equal to 5 kt.
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behaviors that raised concerns about a potential for inconsis-
tent performance.

Figure 9 shows average performance results for E2 com-
pared to B1, B2, and B3. Without considering the CIs, it ap-
pears that the E2 average errors are (i) notably smaller than
the errors associated with B1 for nearly all lead times and (ii)
approximately equivalent to the errors associated with B2 and
B3 for lead times less than 96 h, but with larger average errors
for longer lead times. The paired average differences between
E2 and the baseline system errors are shown in blue, with
95% CIs, as in Fig. 3 for E1. The CIs around the MAIE for
the three model pairs (the top parts of the three plots) suggest
there are no significant differences between the performance
of E2 and the three baseline models. In contrast, the results in
the bottom portion of Fig. 9a (blue line) indicate that E2 per-
formance is significantly better than B1 performance for 72-h
forecasts, with no significant differences for other lead times.
In contrast, E2 performance is significantly worse than B2
performance for lead times of 12, 108, and 120 h; and signifi-
cantly worse than B3 performance for 12- and 120-h lead
times.

Figure 10 quantifies these observed differences. The results
in Fig. 10 also indicate that the percentage improvement of
E2 over B1 at 72 h amounts to an 18% reduction in error. In
contrast, the significant percentage degradations of E2 rela-
tive to B2 and B3 range from 210% (12-h predictions) to
232% (120-h predictions from B2).

The boxplots in Fig. 11 summarize the distributions of abso-
lute intensity errors for E2 compared to B1, B2, and B3. As in
Example 1, the results in Fig. 11 are useful for examining both
the variability in the errors and the magnitudes of outliers. In

general, the boxes in Fig. 11 are relatively similar for the base-
line models and E2, particularly for shorter lead times. It is in-
teresting to note somewhat greater central variability in B1
errors relative to E2 errors for intermediate (36–96 h) lead
times, as well as greater central variability in E2 errors com-
pared to B2 and B3 errors for the longest lead times. How-
ever, the largest differences in performance are associated
with the large errors for all lead times greater than 24 h. In
particular, the E2 forecasts had larger outlier values than the
outlier values for the baseline systems (especially B2 and B3)
for these lead times, as indicated by the many orange points
with values between 60 and 100 kt. In contrast, most of the
outlier points associated with B3 are less than 60 kt.

The frequency of superior performance results in Fig. 12
provide a different take on the performance of E2. In particu-
lar, this figure suggests that E2 may have performed better
than B1 for many lead times. The comparisons of E2 to B2
and B3 (Figs. 9b,c) suggest E2 was superior for some of the
middle lead times (36–72 h), but the differences are generally
not significant statistically. However, for the longest lead
times (108–120 h), B2 and B3 tended to have superior perfor-
mance more frequently than E2. This result may be related to
the differences in variability in the distributions of errors for
these lead times (as noted in the discussion of Fig. 11).

These results are consistent with the results shown in
Fig. 13, which shows the ranking of E2 performance versus
the performance of the three top-flight models. As shown in
Fig. 13, E2 had the best performance for several lead times
between 36 and 84 h, and the percent of cases for which E2
was best was notably larger than 25%. However, E2 also
frequently ranked fourth (worst) for these lead times. Thus,

FIG. 8. Ranking of E1 performance in predicting TC intensity relative to three top-flight fore-
casting models in use by NHC, showing the percent of cases for which E1 was best (1), second
best (2), third best (3), and worst (4). The 95% confidence intervals for the frequencies, based
on the binomial distribution, are shown using dotted lines surrounding each solid line. The solid
horizontal line intersecting the y axis at a value of 25% represents the frequency with which a
forecast would be expected to be “best” if the frequencies were random.
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FIG. 9. As in Fig. 3, but for E2 comparisons with the three baseline models.
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E2 was most commonly best or worst, rather than in the
middle range of performance.

Based on the set of results for E2, NHC decided to not in-
clude explicit E2 intensity predictions as part of the forecast
demonstration during the subsequent TC forecasting season.
This determination was based on the inconsistent behavior of
E2 intensity guidance. While E2 did frequently perform the
best in comparison to other baseline models, especially for
middle lead times, E2 was also frequently the worst performer

and had an error profile that included outliers larger in magni-

tude than all the baseline models. These factors were key indi-

cators that led to NHC’s decision.

4. Discussion and conclusions

The effort described in this paper was truly collaborative,
involving NHC forecasters and managers; university and
agency-based modeling groups; and statisticians, atmospheric
scientists, and analysts at NCAR. Each year, the following ac-
tivities and collaborations occurred:

• NHC forecasters and managers initiated the process of de-
fining which forecast attributes should be evaluated and
clearly specified their ideas, needs, and wishes.

• Statisticians and the evaluation team developed approaches
to respond to questions raised by NHC. Each year, they
worked with NHC to ensure that the methods would pro-
vide meaningful information to aid in NHC selection of
models for the summer demonstration, and they imple-
mented and redesigned versions of the targeted approaches
until the full team was satisfied with the methods to be ap-
plied. Moreover, additional analyses were developed dur-
ing the evaluation phase and implemented in response to
questions or insights that arose.

• The modeling groups created and shared hundreds of ret-
rospective forecasts from their experimental modeling sys-
tems, which made the evaluations possible.

The annual HFIP evaluations provided meaningful and
comprehensive information about model performance to

NHC. Tailoring the verification to answer questions of rele-
vance to NHC helped ensure that the model improvements
would be relevant to the forecasters. Such an effort}to
clearly specify the needs of forecasters and clarify how fore-
cast improvements should be measured in a “user-oriented”
framework}is rare. This project provides a template for one
approach to achieving that goal.

Through the iterative process of method development, the
team was able to tailor verification approaches and displays to
respond to specific questions by NHC forecasters and manag-
ers. This process ensured that the evaluation approaches pro-
vided meaningful responses to NHC’s evolving questions and
needs, and made it possible to provide enhanced performance
information to NHC across the lifetime of the project. Exam-
ples of enhancements during the project include tailoring the
attributes of the summary tables (e.g., Fig. 4), the application
of meaningful statistical inference procedures, and the devel-
opment of the ranking plots (e.g., Fig. 13). Of course, the
methods used here could also be expanded and improved
upon. For example, the boxplots presented in Figs. 5 and 11
show the extreme values as individual points and it would be
possible for one point to overlap (and hide) another; a display
of the extreme points using a distribution curve would provide
more information for comparison.

The breadth and depth of the HFIP evaluations were criti-
cal to the process of building forecaster confidence in the new
modeling capabilities. They broke new ground through the
application of some new approaches but also built on methods
previously applied by NHC or other researchers. The evalua-
tions utilized a holistic approach, bringing together a body of
techniques (some old, some developed through this project)
that enabled verification of TC forecasts from multiple per-
spectives in ways that are consistent with operational objec-
tives. Best practices were applied, including the use of
statistical uncertainty measures and the evaluation of paired
differences. The evaluations demonstrate the benefits of
“going beyond the basics” of verification approaches com-
monly applied by identifying and addressing questions posed
by forecasters, looking beyond the evaluation of mean values,
examining the frequency of superior performance, developing

FIG. 10. Summary table showing comparisons of E2 performance to the performance of baseline models B1, B2, and B3, as in Fig. 4.
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FIG. 11. Boxplots of absolute intensity error results for E2 and B1, B2, and B3, as in Fig. 6 for E1.
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methods to evaluate the ranking of models, and applying sta-
tistical confidence intervals to all comparisons.

This collection of methods was tailored to answer a set of
specific questions, rather than focusing on a single measure

(i.e., average performance); these questions were formulated,
and specific analyses were developed, to provide meaningful
guidance about which models could provide useful informa-
tion and in what circumstances they could be expected to

FIG. 12. As in Fig. 7, but for frequency of superior performance for E2 relative to the baseline models.
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contribute positively to a forecast. The analyses and results of
the evaluations enable the possibility to look more deeply into
the circumstances leading to certain kinds of errors (e.g., out-
liers, poor performance at certain lead times relative to baseline
models, etc.). In addition to informing NHC, the evaluations
provided extensive feedback to the modeling teams regarding
the performance of their models, with specific information re-
garding aspects of the predictions needing improvement; this in-
formation could also be applied by the modeling teams to
develop strategies to further improve their modeling systems.

The flexibility inherent in many of the tools that were devel-
oped and applied made it possible to adjust aspects of the eval-
uations}thresholds, significance levels, definition of “ties”}to
represent the needs of NHC (and they could easily be adjusted
for a different user group). One example shown in section 3 is as-
sociated with the frequency of superior performance assess-
ments. While a threshold of 1 kt}a small difference in forecast
errors}was identified by NHC as representing a meaningful dif-
ference in performance for that evaluation, other thresholds
could easily be applied for other applications to, for example, as-
sess the frequency of larger differences, as shown in Fig. 7. Other
aspects of the HFIP evaluations could easily be adapted to
answer additional questions about the models’ performance.
Importantly, the philosophy embraced in this study is readily
extendable to other types of forecasts and evaluations, from
short-range severe weather predictions to climate outlooks.

Many of the evaluation methods that were developed and
applied during the Stream 1.5 verification project have been
incorporated into a set of tools (MET-TC) that is included in
the enhanced Model Evaluation Tools (METplus; https://
dtcenter.org/community-code/model-evaluation-tools-met/
documentation), an important outcome of the project.
METplus is a freely available, community-supported forecast
evaluation software package that is developed and supported
by the Developmental Testbed Center (DTC; Brown et al.

2021). As a result, the methodologies applied in this study are
widely available to the community for application to TC pre-
dictions in other contexts.

While the statistical approaches applied in the HFIP evalu-
ations were advanced in comparison to many traditional ap-
proaches, a few analyses could be improved or enhanced. For
example, a t statistic was applied in many of the comparisons.
The t statistic assumes the underlying data are normally dis-
tributed, which generally is not a good assumption for the
experimental and baseline error distributions due to their
skewed nature, as illustrated by the boxplots in Fig. 5. In con-
trast (though not shown here) the distributions of paired
differences between the E1 and E2 model errors and the
baseline model errors are well-fit by a normal distribution,
and thus application of the t distribution is appropriate. In a
simple evaluation, as represented in the top part of Fig. 3, the
skewness of the distributions might easily be ignored and the
basic t distribution applied.

Although the unpaired t test is a commonly applied (some-
times naïve) approach that requires the data to satisfy several
assumptions (e.g., a normal distribution), a bootstrapping ap-
proach does not require such assumptions (Efron and Tibshirani
1994). The use of bootstrap techniques for computing confi-
dence intervals would have avoided the assumption of normality
and in some cases perhaps would have provided somewhat
more meaningful confidence intervals}especially for the
“raw” errors}than those computed using an assumption of
normality. Finally, a more detailed examination of extreme er-
rors (e.g., the large errors at the top of the boxplots in Fig. 5)
and their characteristics (e.g., which storm they are associated
with) could provide greater insight into differences among the
models.

Another statistical concern is the large number of compari-
sons made during the project, which raises the question of
“multiplicity” (e.g., Wilks 2006, 2019). This issue focuses on

FIG. 13. As in Fig. 8, but for ranking of E2 performance relative to performance of three
top-flight forecasting systems.
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the fact that with many tests and comparisons, some fraction
of the test statistics is likely to be statistically significant sim-
ply by chance, and the true statistical significance level is not
the assumed value [i.e., when many tests are undertaken in
the same study, the true significance level is larger than the as-
sumed value (e.g., 0.05)]. While this consideration is incorpo-
rated into many confirmatory statistical studies (e.g., in
medical trials), it was ignored in the exploratory HFIP model
evaluations.

The kinds of approaches applied here}and user-relevant
verification approaches in general}could be used beneficially
in many other applications and for evaluations and compari-
sons of NWP predictions and other types of forecasts (e.g., hy-
drologic, road weather, and climate predictions) where specific
users are identified and involved in defining the verification
questions of interest. As in HFIP, these approaches could pro-
vide a framework for decision-making and selection of models,
as well as the assessment of the benefits associated with many
kinds of forecasting systems. However, this kind of framework
has not commonly been applied in the development and im-
provement of weather/climate forecasting systems. As pre-
sented and described in this paper, some factors required to
apply these types of approaches include

• identification of and coordination with users/decision-
makers who can provide information on important factors
in their application of the forecasts;

• selection of specific questions that can guide evaluation of
these factors;

• identification of valid statistical or other approaches that
can be used to answer the selected questions;

• iterative discussions between forecasters, forecast users,
and an independent evaluation team.

In summary, this paper presented some new ideas related
to the development and application of user-relevant verifica-
tion approaches, along with statistically valid evaluation
methods designed to answer specific questions about forecast
performance. The benefits of the approach described include
the ability to obtain more meaningful information about fore-
cast quality in the context of users’ decision-making processes.
Moreover, many of the types of questions and evaluation
methods applied here (e.g., boxplot analyses, frequency of su-
perior performance, and so on) would be appropriate for ap-
plication to many other types of forecasts. Finally, while it is
not possible to quantify the contribution of this HFIP project
to NHC’s forecast operations, NHC was encouraged that im-
provements in NHC’s forecast accuracy occurred during the
course of the project.
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